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Topic

Reference

Recursion and
Backtracking

Ch.1 and Ch.2 JeffE

Dynamic Programming

Ch.3 JeffE and Ch.15 CLRS

Greedy Algorithms

Ch.4 JeffE and Ch.16 CLRS

Amortized Analysis

Ch.17 CLRS

Elementary Graph
algorithms

Ch.6 JeffE and Ch.22 CLRS

Minimum Spanning
Trees

Ch.7 JeffE and Ch.23 CLRS

Single-Source Shortest
Paths

Ch.8 JeffE and Ch.24 CLRS

All-Pairs Shortest Paths

Ch.9 JeffE and Ch.25 CLRS

Maximum Flow

Ch.10 JeffE and Ch.26 CLRS

String Matching

Ch.32 CLRS

NP-Completeness

Ch.12 JeffE and Ch.34 CLRS




Greedy approach



An activity-selection problem

* select a maximum-size subset of mutually compatible activities
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Dynamic programming

e Substructure
Si=lareS: fi <sk< fv <5s;}
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A recursive solution

0 if S;; =0,
cli, j1= | max {cli, k] +clk, j1+1) if S #9.
1<k<]
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Converting a dynamic-programming solution
to a greedy solution

Theorem 16.1
Consider any nonempty subproblem S§;;, and let a,, be the activity in §;; with the
earliest finish time:

fm=min{fi:a; € S;j} .
Then

1. Activity a,, 1s used in some maximum-size subset of mutually compatible ac-
tivities of §;;.

2. The subproblem §;,, is empty, so that choosing a,, leaves the subproblem S,,;
as the only one that may be nonempty.



Elements of the greedy strategy

* A greedy algorithm obtains an optimal solution to a problem by
making a sequence of choices

* For each decision point in the algorithm, the choice that seems best
at the moment is chosen



Steps from DP to greedy algorithm

* Determine the optimal substructure of the problem.
* Develop a recursive solution.

* Prove that at any stage of the recursion, one of the optimal choices is
the greedy choice. Thus, it is always safe to make the greedy choice.

* Show that all but one of the subproblems induced by having made
the greedy choice are empty.

* Develop a recursive algorithm that implements the greedy strategy
* Convert the recursive algorithm to an iterative algorithm.



Steps from DP to greedy algorithm

In practice, we usually streamline the above steps
when designing a greedy algorithm



design greedy algorithms

e Cast the optimization problem as one in which we make a choice and
are left with one subproblem to solve.

* Prove that there is always an optimal solution to the original problem
that makes the greedy choice, so that the greedy choice is always
safe.

 Demonstrate that, having made the greedy choice, what remains is a
subproblem with the property that if we combine an optimal solution
to the subproblem with the greedy choice we have made, we arrive at
an optimal solution to the original problem.
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design greedy algorithms

the greedy-choice property and optimal substructure are
the two key ingredients.



Greedy-choice property

* a globally optimal solution can be arrived at by making a locally
optimal (greedy) choice. In other words, when we are considering
which choice to make, we make the choice that looks best in the
current problem, without considering results from subproblems
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Optimal substructure

* A problem exhibits optimal substructure if an optimal solution to the
problem contains within it optimal solutions to subproblems.

* a key ingredient of assessing the applicability of dynamic programming as well
as greedy algorithms



Greedy versus dynamic programming

* 0-1 knapsack problem

* A thief robbing a store finds n items; the ith item is worth vi dollars and
weighs wi pounds, where vi and wi are integers. He wants to take as valuable
a load as possible, but he can carry at most W pounds in his knapsack for
some integer W. Which items should he take?

e fractional knapsack problem
* the setup is the same, but the thief can take fractions of items, rather than
having to make a binary (0-1) choice for each item
e example
* (10, $60) (20,5100) (30,5120) knapsack capacity: 50



Huffman codes

* a widely used and very effective technique for compressing data

* savings of 20% to 90% are typical, depending on the characteristics of the
data being compressed

 consider the data to be a sequence of characters.

* Huffman’s greedy algorithm uses a table of the frequencies of

occurrence of the characters to build up an optimal way of
representing each character as a binary string.
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Example

* 2 100,000-character data file that we wish to store compactly
* many ways to represent such a file of information

 consider the problem of designing a binary character code (or code

for short) wherein each character is represented by a unigue binary
string.

a b C d =

Frequency (in thousands) 45 13 12 16 9



* If we use a fixed-length code,
* we need 3 bits to represent six characters: a=000,b =001, ..., f=

101. This
 method requires 300,000 bits to code the entire file. Can we do
better?
a b ® d e i
Frequency (in thousands) 45 13 12 16 9 S

Fixed-length codeword 000 001 010 Ol1 100 101



* A variable-length code can do considerably better than a fixed-length
code, by giving frequent characters short codewords and infrequent
characters long codewords.

* a savings of approximately 25%.

a b & d e f
Frequency (in thousands) 45 13 12 16 9 3
Fixed-length codeword 000 001 010 Ol1 100 101
Variable-length codeword 0 101 100 111 1101 1100




Prefix codes

* consider only codes in which no codeword is also a prefix of some
other codeword.

* the optimal data compression achievable by a character code can always be
achieved with a prefix code

* Encoding is always simple for any binary character code; we just
concatenate the codewords representing each character of the file

e code the 3-character file abc as 0-101-100 = 0101100

* string 001011101 parses uniquelyas0-0-101 - 1101, which decodes
to aabe



decoding process

* A binary tree whose leaves are the given characters provides a
convenient representation

* We interpret the binary codeword for a character as the path from
the root to that character, where 0 means “go to the left child” and 1
means “go to the right child.”

* these are not binary search trees
» optimal code for a file is always represented by a full binary tree
* an optimal prefix code has exactly | C| leaves,
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Ccost

 the tree for an optimal prefix code has exactly |C| leaves, one for
each letter of the alphabet, and exactly |C|-1 internal nodes

 the cost of the tree T (number of bits required to encode a file)

* the length of the codeword for character ¢
* frequency of cin the file

B(T) =) f(c)dr(c)

ceC

23



Constructing a Huffman code

* proof of correctness relies on the greedy-choice property and optimal
substructure

* The algorithm builds the tree T corresponding to the optimal code in a
bottom-up manner

* |t begins with a set of | C| leaves and performs a sequence of |C| - 1
“merging” operations to create the final tree
* min-priority gueue Q, keyed on f, is used to identify the two least-frequent objects
to merge together

* The result of the merger of two objects is a new object whose frequency is the sum
of the frequencies of the two objects that were merged.
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pseudocode

HUFFMAN(C)
1 n <« |C|
2 Q0 <« C

3 fori < 1ton—1
4 do allocate a new node z
3

left[z] < x < EXTRACT-MIN(Q)

right[z] <~ y <= EXTRACT-MIN(Q)

INSERT(Q, z)
return EXTRACT-MIN(Q)

6

7 flz] < flxI+ fIy]
8

9

> Return the root of the tree.
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running time

* O(nlgn)



Construct tree
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